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This paper is the second of a series on numerical simulation of distributed feedback fiber laser (DFB-FL) sensors and their 
applications, especially in aeronautics. Here the developed numerical analysis of a DFB-FL air acoustic sensor is presented. 
The main purpose of the performed theoretical analysis consists into a better understanding of DFB-FL itself and of its in-
teraction with environment in order to be operated as an air acoustic sensor.  
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1. Introduction 
 
This paper is the second one of a series pointing to 

reach an improved design of fiber optic sensors [1] used 
for various applications, in this case acoustic sensors. This 
paper contains preliminary results obtained in numerical 
simulation of Distributed FeedBack Fiber Lasers (DFB-
FL) used as acoustic sensors. Since the earliest papers on 
fiber-optic acoustic sensors more than 20 years ago [2], 
most of the attention in the field has been on interferomet-
ric hydrophones [3-5]. These devices have high sensitivi-
ties, but they require sensor heads in which the smallest 
dimension is typically large compared with the fiber di-
ameter and rather complex readout systems. In contrast to 
interferometric sensors, fiber Bragg grating sensors [6, 7] 
can easily be used for quasi distributed sensing by means 
of writing many gratings along a single fiber. However, 
although some research has been done on the sensing of 
high acoustic pressures [8, 9] and on sensors in which the 
variation of the reflected intensity is measured [10], the 
bandwidth of Bragg grating reflection spectra is generally 
too large to yield a satisfactory resolution for acoustic 
sensing without the use of sensitivity-enhancing sensor 
heads [11]. The line width of a DFB-FL can be considera-
bly narrower than the bandwidth of the reflected signals 
from passive Bragg gratings, and fiber Bragg grating la-
sers are therefore possibly an attractive alternative for 
acoustic sensing. As is the case of other fiber Bragg grat-
ing devices, the sensors can easily be multiplexed and used 
for quasistatic sensing [12–14]. There are, however, still 
some unresolved questions regarding the stability of re-
motely pumped systems [15]. 

Fiber DFB lasers have the advantage of stable lasing 
in a single longitudinal mode and, in addition, have a rela-
tively short sensitive cavity length. The latter is important 

when measuring high-frequency acoustic fields. The re-
sponse of the fiber lasers’ frequencies to acoustic signals 
in air was numerically simulated. Because of the rather 
high compressibility of air, thermally induced frequency 
shifts of the lasers have to be taken into account in addi-
tion to the pressure-induced shifts. 

A potential application of this kind of devices could 
be acoustic sensing in aeronautics and hostile industrial 
environments. It is also important to understand the re-
sponse when acoustic fields represent a noise source. Such 
acoustic noise can enhance the frequency noise of DFB-FL 
used as sources, but with proper packaging this acousti-
cally induced frequency noise can be reduced. The inves-
tigated DFB-FL air acoustic sensor configuration was un-
coated, but the presented theoretical analysis can easily be 
extended to fibers with coatings. 

The interaction of acoustic air pressure wave with the 
optic fiber is theoretically analyzed. The main idea of the 
presented theoretical analysis is that the interaction be-
tween the DFB-FL acoustic sensor and the environment 
(depending on the distance from the DFB-FL acoustic 
sensor) can be considered as adiabatic. The necessary con-
ditions where this hypothesis is correct are presented.  

 
 
2. Theory 
 
In Fig. 1 the schematic of the considered DFB-FL 

acoustic sensor is presented. It is necessary to point out 
that in the DFB-FL acoustic sensor placed into a certain air 
environment, two zones have to be considered: one in the 
near proximity of the optic fiber and the second one far 
away of it. It can be considered without loss of generality 
that when the pressure of the air varies due to the acoustic 
wave the work done to compress and decompress the air 
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leads to temporal temperature variations of the DFB-FL 
environment [16]. These temperature variations follow the 
first principle of thermodynamics, which is expressed as 
[17]  
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In Eq.(1) dq is the heat added per unit volume, T is the 
temperature, p is the pressure, ρ is the density of mass, cP 
and cV are the specific-heat capacities at constant pressure 
and volume, respectively. In the last line of Eq. (1) the 
ideal-gas-law approximation of constant TpV is used. 
The term dq must equal the heat transferred from the sur-
roundings [18]: 
 

( ) convdqdtTdq +∇= 2κ   (2) 
 
In Eq. (2) κ is the thermal conductivity and dqconv is the 
heat transfer resulting from convection. Because of the 
time scale of the acoustic pressure wave, the latter term is 
ignored here. Explicitly, the convection is a much slower 
process in comparison with acoustic wave pressure varia-
tions. For low acoustic pressures compared with the static 
pressure, which is the most usual situation, we can set the 
value of pT as 
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By splitting the temperature and the pressure into static 
components (Tstatic and pstatic, respectively), considering the 
harmonically variation of the acoustic components 
( ( ) ( )tierT ωΔ  and ( ) ( )tierp ωΔ , respectively) and combining Eqs.  
(1) and (3), we get [16] 
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In Eqs. (4) – (8) 

airTD is the thermal diffusivity of air and 

typically has a value of 126105.22 −−× sm at 300 K [18]. In Eq. 
(6) ω is the acoustic angular frequency. Far away from the 
fiber, we can neglect the Laplacian term ( )TΔ∇2  in Eq. (6) 
and thus assume that the process is adiabatic if 
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In expression (9), c is the velocity of sound, and typi-

cal values [18] for air at 300 K have been inserted. From 
Eq. (9), we can see that the adiabatic assumption implies 
that 0TT Δ≈Δ . It is then trivial to calculate the Laplacian 
because 0TΔ is proportional to the acoustic pressure and 
harmonic. Thus, for frequencies up to several megahertz, 
the only significant contribution to the Laplacian term in 
Eq.(9) comes from the fact that the medium becomes in-
homogeneous because of the presence of optical fiber. 

In this paper we study acoustic frequencies in the 
range of 100 Hz to 20 kHz. Thus the acoustic wavelength 
is large compared with the fiber diameter, and we can ig-
nore the spatial dependence of the acoustic pressure in the 
vicinity of the fiber. The temperature field is spatially de-
pendent on only the radial distance r from the fiber axis, 
and Eq. (9) reduces its form to an inhomogeneous Bessel 
equation of the zeroth order with the general solution 
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In silica there is no significant acoustical generation of 
heat, and thus the temperature in the fiber is determined 
from a homogeneous Bessel equation with the general 
solution 
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The expression smD

silicaT
2610834.0 −×= [18] is the 

thermal diffusivity of fused silica. The constants C1,2,3,4 in 
Equations (10.1.11) and (10.1.12) are found by use of the 
boundary condition ( ) 0lim TrTr Δ=Δ∞→ and by the require-
ment that both ( )rT and its derivative are finite and continu-
ous everywhere. This condition yields 
 

( ) ( )( )
( )

( )( )air
T

T

silica

airsilica H
D

D

J
HJ

T
C

air

silica ζ
ζ

ζζ 2
0

1

2
10

0
1

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=   (12) 

12 iCC −=    (13) 

( ) ( ) ( )( )
( )( ) silica

air

T

T

air

airsilica
silica D

D

H

HJ
J

TC

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

=

ζ

ζζ
ζ 2

1

2
01

0

0
3  (14) 

04 =C                    (15) 

airT
air iD

R ωζ =                     (16) 

silicaT
silica iD

R ωζ =                (17) 



2458                                                                     I. Lancranjan, S. Miclos, D. Savastru, A. Popescu 
 

 

where R is the fiber radius, which in our case is 
mμ5.62 and ( )2

iH is the second Hankel function of the order i. 
The total frequency shift of the laser at the acoustic 

frequency can be found by the addition of the frequency 
shifts caused by the temperature and the pressure varia-
tions in the fiber. The dc temperature sensitivity of the 
laser frequency ν of a fiber laser at constant pressure p and 
longitudinal stress zzσ is 
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where zz∈ is the temperature-shift-induced strain along the 
longitudinal axis (which also equals the strain along the 
other axes), 465.1≈effn is the effective modal refractive 
index, α is the thermal-expansion coefficient (typically 
equal to 161055.0 −−× K for silica [19-25]), and ξ is the 
thermo-optic coefficient. The subscripts zzσ and p indicate 
constant longitudinal stress and pressure, respectively. If 
the fiber is axially constrained, i.e., zz∈ is constant, the dc 
temperature sensitivity equals 
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where 27.011 ≈p and 12.012 ≈p  [26] are the diagonal and 
the off-diagonal elements, respectively, of the elastic-
optical tensor of silica and 17.0=μ is the Poisson ratio. 
Note that, although zz∈ is constant, the strain in other direc-
tions may vary. 

In our harmonically varying heat-diffusion case the 
temperature is not spatially uniform over the fiber cross 
section. This non-uniformity leads to stress and strain even 
in parts of the fiber cross section where the temperature 
fluctuations are small. The laser frequency shift in this 
case equals 
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where zz∈ is the temperature-induced strain along a trans-
verse axis, 0=∈zz in the axially constrained case. 

It is difficult to make exact predictions of this ther-
mally induced strain in a fiber with multiple dopants. In 
particular, the thermal-expansion coefficient is expected to 
be non-uniform over the cross section of the fiber. For 
simplicity, we used the expansion coefficient and the elas-
tic constants of silica, including a Young’s modulus of 72 
GPa, throughout the fiber. The strain was calculated by 
division of the fiber radius r into 5000 sections and the 
assumption of constant temperature within each section. In 
each layer i the strain is then given by the Lame´ solution 
[27, 28]: 
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where jK ;1 , jK ;2 and jK ;3 are constants and jrr;∈ , 

j;θθ∈ and jzz;∈ are the radial, the azimuthally, and the lon-
gitudinal strains, respectively, in the fiber. 
Clearly jzz;∈ and thus jK ;3 must be constant in a transverse 

cross section of the fiber, and jK ;2 has to be zero in the 
innermost layer. In addition, the radial stress and the azi-
muthally strain have to be continuous. By applying these 
boundary conditions, we can find the strain and thus the 
total temperature-induced frequency shift. 

The frequency shift resulting from the thermally in-
duced strain is shown in Figures 3 and 4 for the axially 
free and the constrained cases, respectively. The consid-
ered universal numerical constants, with 16101.5 −−×= Kξ , 
were used in the calculations. In the same figures the 
strain-independent term of Eq. 21) is plotted. As can be 
seen from the figures, the strain in the core decreases more 
slowly than does the temperature. 

The reason is that the strain is dependent on the tem-
perature throughout the whole fiber cross section, includ-
ing the core containing the Bragg grating and the clad. At 
higher frequencies the thermally induced strain is therefore 
more important than the temperature fluctuations in the 
core. At approximately 1 kHz the temperature at the sur-
face of the fiber and in the core isπ out of phase for the 
first time, which causes a dip in the radial-strain curves. 

If we use only the values of strain and temperature in 
the center of the fiber in Eq. (21), we introduce errors be-
cause the optical mode has a finite confinement. The errors 
can be corrected by the assumption of a Gaussian optical 
mode [29] and by integration over the fiber cross section 
of the product of the mode intensity and the frequency 
shift given by Eq. (21). This correction was, however, 
found to be negligible. 

To find the total frequency shift, we also have to add 
the contribution from the acoustic pressure. Because the 
wavelength of the acoustic wave is much larger than the 
diameter of the fiber, we assume that the pressure is uni-
form over the fiber cross section. For an axially con-
strained fiber, the pressure sensitivity has a predicted value 
of (Δν/ν)e,T = -4.5×10-12 Pa-1, whereas the predicted value 
for an axially free fiber is (Δν/ν)p,T =2.7×10-12 Pa-1 In Figs. 
4 and 5 the total and the pressure dependent frequency 
shifts for the axially free and the constrained cases, respec-
tively, are plotted. As can be seen from the figures, ther-
mal effects dominate over direct pressure for all measured 
frequencies for a fiber free to expand, but the thermal ef-
fects have less importance for acoustic frequencies higher 
than 3 kHz for the axially constrained case. The reason for 
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the difference is the thermally induced longitudinal strain 
for the fiber that is free to expand. 

 
 
3. Numerical simulation results. 
 
Numerical simulations were performed for optical fi-

ber doped with erbium ions (Er3+). The considered DFB-
FL acoustic sensor has an overall diameter of 125 μm, 
with a core of 8 μm diameter. The Bragg grating spatial 
modulation wavelength (Λ) was considered as 500 nm. 
The numerical simulations were performed using 1.550 
µm as the laser operating wavelength.  

The numerical simulations were performed using the 
SCILAB and MATLAB software packages. 

In Fig. 1 the schematic of the investigated acoustic 
DFB-FL sensor is presented. 

 
 

 
 

Fig. 1.  Schematic representation of the investigated 
acoustic DFB-FL sensor. 

 
 
In Fig. 2 the temperature transfer functions at 

KT 300=  are plotted against the r for acoustic frequen-
cies of f=100 Hz and f=20 kHz. The parameters listed in 
Table 1 were used in the calculations. The amplitude of 
the transfer function at the center of the fiber is plotted 
versus the frequency in Fig. 2. From the figures we can 
clearly see that the diffusion of heat to the core is an effect 
that is a low pass filter in frequency. This fact is a conse-
quence of the slowness of heat diffusion in comparison 
with the considered acoustic pressure wave characteristic 
times [16]. 

 
 

 
Fig. 2. ΔT/Δp as a function of the radius r at acoustic fre-
quencies of 100 Hz and 20 kHz for a stripped fiber with a ra-
dius of 62.5 μm and embedded in air at T = 300 K. 
 

 
As can be easily observed in Fig. 2, the phase of the 

transfer function exhibits small spatial variation across the 
fiber for lower frequencies, but for f=20 kHz the spatial 
phase variation is more rapid.  

 

 
 

 Fig. 3. ΔT/Δp variation for the same DFB-FL configura-
tion fiber as that of Fig. 2. 

 
 

 In Figs. 3, 4 and 5 are presented numerically simu-
lated parameters of the studied DFB-FL structure as func-
tions of acoustic frequency. In Fig. 3 the relative variation 
of temperature versus acoustic wave pressure variation. In 
Fig. 4 the relative frequency laser shift is presented as a 
function of considered acoustic frequency. In Figs. 4 and 5 
the frequency laser shift variations versus the acoustic 
frequency are presented for the cases of the optic fiber 
with and without constrain.  

 

 
 

Fig. 4. Contributions to the total frequency shift Δνtot/Δp 
of a fiber laser made of the same fiber as that of Fig. 1 
and embedded in air with acoustic waves. The contribu-
tions from the acoustic pressure ΔνT and the three ther-
mally induced terms of Eq.(11), which are the strain-
independent  term  Δνe,p  and  the  terms  proportional to  
      rr∈ and zz∈  are plotted. The fiber is axially free. 

 
 

The influence of the exposure of the DFB-FL sensor 
structure to an acoustic wave is illustrated in Figs. 6 and 7. 
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The RMS frequency shift strongly decreases with acoustic 
frequency. 

 
 

Fig. 5. Same as for Fig. 4 but with the fiber axially 
 constrained. 

 

 
 
Fig. 6. Theoretical frequency shifts of DFB-FL sensor 
structure when exposed to an acoustic wave. The error  
               bars show the extreme estimated data. 

 

 
 

Fig. 7. Same as for Fig. 6 but for a modified DFB-FL 
structure. 

 
 

Figure 8 presents the NEP and the frequency noise 
determined by the acoustic wave. As it can be observed in 
this figure, the NEP is stabilized and the frequency noise is 

relatively small because the amplitude of the oscillations 
of the acoustic wave generated by pressure and tempera-
ture are small compared to the pressure and temperature of 
the environment (p and T static). 
 
 

 
 

Fig. 8. NEP determined by use of the acoustic sensitivity 
and  typical noise spectrum for studied fiber DFB-FL 

structure. 
 
 
Temperature gradient in air at the fiber surface that 

are due to pure diffusion and to free and forced convection 
is presented in Fig. 9 versus the acoustic pressure and in 
Fig. 10 versus the acoustic frequency. The linearity ob-
served in Fig. 9 is due to the fact that the phenomenon is 
quasi adiabatic. 

 
 

 
 
 

Fig. 9. Temperature gradients in air at the fiber surface that 
are due to pure diffusion and to free and forced convection 
with f = 100 Hz versus the acoustic pressure. The gradients 
are calculated by use of the theory of Section 2. The free 
convection is calculated for dc temperature differences of 1, 
5, and 10 K between the fiber surface and  
                      air, but the three curves overlap. 
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Fig. 10. Same temperature gradients as for Fig. 9 at dif-
ferent acoustic pressures versus the acoustic frequency. 
The pressure was considered in  the  range 85–125 dB re.  
                                      20 μPa. 
 

 
One important observation to be underlined is that a 

series of parameters describing the function of DFB-FL as 
an acoustic sensor can be simulated, but a certain limita-
tion is imposed by the possible experimental setup in the 
sense that some of them are difficult to be measured.  

 
 

4. Conclusions 
 
The presented results concerning the numerical simu-

lation of DFB-FL acoustic sensor structure will be further 
developed by designing an experimental device dedicated 
to aeronautical applications.  
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